Supervision:
Dr. Christian Faubel
Project type: 1. Projekt
A production of the Academy of Media Arts Cologne.
Source:
Archiv Kunsthochschule für Medien Köln
Copyright: KHM / Autoren
Kontakt: archiv@khm.de

Artificial neural pattern

P_5315_artificial_neural_pattern_02.jpg
Authors:
Vincent Brinkmann
Year: 2017
Categories: Installation, installation
Project type: 1. Projekt
A system learns to draw independently. An artificial neural net generates self-observed patterns. The ensemble consists of an artificial neural network, a drawing machine and a camera, a recursive system is created. The generative process of learning within the neural network draws patterns. These patterns are a visualization of the learning process of the neural network. The systems influence each other on three levels. One layer processes the image of the camera. The second level, an artificial neural network, learns from the input of the camera. The third layer sends the signals from the network to the drawing machine and the drawing is again observed by the camera. This results in a recursive system that learns to draw patterns on its own. The neural network, based on the method of the Perceptron network of Frank Rosenblatt and the Hebb learning rule from the beginning of research on artificial intelligence in the 1950s. Both methods still form the conceptual basis of artificial neural networks today. Artificial neural networks will increasingly operate in our society. They will be able to efficiently evaluate decisions, evaluate data - categorize, recognize objects and learn by data. The project ""Neuronal Signs"" visualizes the basic structure of learning in neural algorithms.
Collaboration:
Idee und Realisation: Vincent Brinkmann
Supervision:
Dr. Christian Faubel
Authors:
Vincent Brinkmann
A production of the Academy of Media Arts Cologne.
Source:
Archiv Kunsthochschule für Medien Köln
Copyright: KHM / Autoren
Kontakt: archiv@khm.de
P_5315_artificial_neural_pattern_02.jpg
P_5315_artificial_neural_pattern_03.jpg
Please wait